Fuzzy least-squares algorithms for interactive fuzzy linear regression models

نویسندگان

  • Miin-Shen Yang
  • Hsien-Hsiung Liu
چکیده

Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The 0rst is based on Tanaka’s linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new types of fuzzy least-squares algorithms with a noise cluster for interactive fuzzy linear regression models are proposed. These algorithms are robust for the estimation of fuzzy linear regression models, especially when outliers are present. Numerical examples are given to detail the e5ectiveness of this approach. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS

We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...

متن کامل

Evaluation of hybrid fuzzy regression capability based on comparison with other regression methods

In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...

متن کامل

ESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL

Fuzzy linear regression models are used to obtain an appropriate linear relation between a dependent variable and several independent variables in a fuzzy environment. Several methods for evaluating fuzzy coefficients in linear regression models have been proposed. The first attempts at estimating the parameters of a fuzzy regression model used mathematical programming methods. In this the...

متن کامل

Identification of Possibilistic Linear Systems by Quadratic Membership Functions of Fuzzy Parameters

We have already formalized several models of the possibilistic linear regression analysis, where it is assumed that possibilistic parameters are non-interactive, i.e., the joint possibilistic distribution of parameters is defined by minimum operators. In this paper, we will deal with the interactive case in which quadratic membership functions defined by A. Celmins are considered. With the same...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2003